北京博研传媒信息咨询有限公司 - 市场调研在线|消费者调研|品牌调研
全国服务热线:400-186-9919

2024-2030年中国机器学习行业市场现状调查及投资前景研判报告

机械机电
分享:
复制链接

2024-2030年中国机器学习行业市场现状调查及投资前景研判报告

发布时间:2024/7/13 21:42:44

中国的机器学习行业已经发展了十多年,但由于技术的快速发展和不断提升,它的发展也变得越来越快,给企业带来了极大的机遇。近年来,机器学习行业的市场也在迅速增长,从2013年的一亿元到2018年的超过20亿元,增长了约20%。近年来,机器学习行业也出现了较多的企业,其中以互联网企业和实体企业为主。实体企业以中国机器人行业协会成员企业、比较成熟的机器学习行业企业以及涉及机器学习技术的研发机构等为主,其中有北京赛道科技、智慧安联、海康威视等公司;而互联网企业主要以搜索引擎、视频网站、智能家居等公司为主,其中包括百度、京东、滴滴出行等公司。随着技术的不断改进,机器学习领域的竞争越来越激烈,市场分配也变得越来越不均衡。从企业角度来看,机器学习行业自2015年以来大规模发展,企业在技术上的投入也越来越多,竞争越来越激烈。从技术的角度来看,机器学习技术的发展也有了很大的提升,虽然市场上有许多企业,但技术的创新却很少,这也加剧了企业之间的竞争。中国机器学习行业市场现状及竞争格局是复杂的,市场上企业的技术投入也越来越多,竞争也越来越激烈,创新却比较少。中国机器学习行业的发展将伴随着技术的不断改进,同时也将有更多的企业参与其中,并将会有更多的机遇可供投资者投资。
    博研咨询发布的《2024-2030年中国机器学习行业市场现状调查及投资前景研判报告》共九章。首先介绍了机器学习行业市场发展环境、机器学习整体运行态势等,接着分析了机器学习行业市场运行的现状,然后介绍了机器学习市场竞争格局。随后,报告对机器学习做了重点企业经营状况分析,xx分析了机器学习行业发展趋势与投资预测。您若想对机器学习产业有个系统的了解或者想投资机器学习行业,本报告是您不可或缺的重要工具。
    本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。

  • 45573601
  • 博研传媒咨询了解机构实力
  • 010-62665210、18610762555、400-186-9919
  • service@uninfo360.com

本报告著作权归博研传媒咨询所有,未经书面许可,组织和个人不得以各种形式复制、传播或输出中华人民共和国境外。未经授权使用本报告的相关商业行为都将违反《中华人民共和国著作权法》和其他法律法规以及有关国际公约的规定。

若征得博研传媒咨询同意进行引用、刊发的,需在允许的范围内使用,并注明出处为“博研传媒咨询”,且分析观点以博研传媒咨询官方发布的内容为准,不得进行其他形式的删减、增添、拼接、演绎、歪曲等。因不当使用而引发的争议,博研传媒咨询不承担因此产生的任何责任,并保留向相关责任主体进行责任追究的权利。

  • 报告目录
  • 研究方法
报告简介
中国的机器学习行业已经发展了十多年,但由于技术的快速发展和不断提升,它的发展也变得越来越快,给企业带来了极大的机遇。近年来,机器学习行业的市场也在迅速增长,从2013年的一亿元到2018年的超过20亿元,增长了约20%。近年来,机器学习行业也出现了较多的企业,其中以互联网企业和实体企业为主。实体企业以中国机器人行业协会成员企业、比较成熟的机器学习行业企业以及涉及机器学习技术的研发机构等为主,其中有北京赛道科技、智慧安联、海康威视等公司;而互联网企业主要以搜索引擎、视频网站、智能家居等公司为主,其中包括百度、京东、滴滴出行等公司。随着技术的不断改进,机器学习领域的竞争越来越激烈,市场分配也变得越来越不均衡。从企业角度来看,机器学习行业自2015年以来大规模发展,企业在技术上的投入也越来越多,竞争越来越激烈。从技术的角度来看,机器学习技术的发展也有了很大的提升,虽然市场上有许多企业,但技术的创新却很少,这也加剧了企业之间的竞争。中国机器学习行业市场现状及竞争格局是复杂的,市场上企业的技术投入也越来越多,竞争也越来越激烈,创新却比较少。中国机器学习行业的发展将伴随着技术的不断改进,同时也将有更多的企业参与其中,并将会有更多的机遇可供投资者投资。
    博研咨询发布的《2024-2030年中国机器学习行业市场现状调查及投资前景研判报告》共九章。首先介绍了机器学习行业市场发展环境、机器学习整体运行态势等,接着分析了机器学习行业市场运行的现状,然后介绍了机器学习市场竞争格局。随后,报告对机器学习做了重点企业经营状况分析,xx分析了机器学习行业发展趋势与投资预测。您若想对机器学习产业有个系统的了解或者想投资机器学习行业,本报告是您不可或缺的重要工具。
    本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国家统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
报告目录

第一章机器学习相关介绍

1.1 人工智能相关概念

1.1.1 人工智能的定义

1.1.2 人工智能产业链

1.1.3 人工智能基本要素

1.2 机器学习的概念

1.2.1 机器学习的定义

1.2.2 机器学习开发平台

1.2.3 机器学习的原理

1.2.4 机器学习应用范围

1.3 机器学习的分类

1.3.1 按学习模式不同分类

1.3.2 按算法网络深度分类

第二章2019-2023年人工智能行业发展综合分析

2.1 全球人工智能行业发展综述

2.1.1 人工智能发展历程

2.1.2 人工智能支持政策

2.1.3 人工智能市场规模

2.1.4 人工智能区域分布

2.1.5 人工智能市场结构

2.1.6 人工智能专利数量

2.1.7 人工智能融资规模

2.1.8 人工智能应用状况

2.2 中国人工智能市场运行状况

2.2.1 人工智能发展历程

2.2.2 人工智能产业政策

2.2.3 人工智能市场规模

2.2.4 人工智能软件规模

2.2.5 人工智能企业数量

2.2.6 人工智能发展现状

2.2.7 人工智能从业人员

2.2.8 人工智能融资规模

2.3 人工智能基础层

2.3.1 基础层产业链价值

2.3.2 基础层发展历程

2.3.3 基础层市场规模

2.3.4 基础层发展现状

2.3.5 基础层融资规模

2.3.6 基础层发展问题

2.3.7 基础层发展趋势

2.4 人工智能技术层

2.4.1 技术层发展现状

2.4.2 人工智能技术全景

2.4.3 人工智能技术水平

2.4.4 人工智能技术分布

2.4.5 人工智能技术成熟度

2.4.6 人工智能热点技术

2.4.7 人工智能专利数量

2.4.8 自然语音处理技术

2.4.9 生物特征识别技术

2.4.10 知识图谱技术

2.4.11 计算机视觉技术

2.4.12 语音语义技术

2.4.13 人工智能技术平台

2.4.14 技术层发展问题

2.4.15 技术层发展趋势

2.5 人工智能应用层

2.5.1 应用层发展现状

2.5.2 各应用层成熟度

2.5.3 应用层市场结构

2.5.4 应用层发展问题

2.5.5 应用层发展趋势

2.5.6 人工智能医疗领域应用

2.5.7 人工智能金融领域应用

2.5.8 人工智能智慧城市应用

2.5.9 人工智能教育领域应用

2.5.10 人工智能制造业应用

2.6 部分城市人工智能产业发展状况

2.6.1 上海市

2.6.2 北京市

2.6.3 深圳市

2.6.4 杭州市

2.7 中国人工智能行业发展趋势分析

2.7.1 人工智能总体发展趋势

2.7.2 人工智能宏观趋势研判

2.7.3 人工智能技术发展研判

2.7.4 人工智能应用场景研判

2.7.5 人工智能市场规模预测

第三章2019-2023年机器学习行业发展综合分析

3.1 全球机器学习行业发展综述

3.1.1 机器学习市场规模分析

3.1.2 机器学习行业发展动力

3.1.3 机器学习市场竞争格局

3.1.4 机器学习发展面临挑战

3.1.5 机器学习企业竞争优势

3.1.6 机器学习市场前景预测

3.2 中国机器行业发展现状分析

3.2.1 机器学习行业发展历程

3.2.2 机器学习行业政策回顾

3.2.3 机器学习市场规模分析

3.2.4 机器学习市场区域分布

3.2.5 机器学习市场竞争格局

3.2.6 机器学习平台市场份额

3.2.7 机器学习行业制约因素

3.3 中国机器学习行业技术发展状况

3.3.1 机器学习技术发展路线

3.3.2 机器学习专利申请数量

3.3.3 机器学习技术发展现状

3.3.4 机器学习技术成熟度

3.3.5 机器学习技术研究进展

3.3.6 机器学习技术研究趋势

第四章中国机器学习产业链综合分析

4.1 机器学习产业链构成

4.2 机器学习产业链上游分析

4.2.1 人工智能芯片主要类型

4.2.2 人工智能芯片市场规模

4.2.3 人工智能芯片供应商

4.2.4 云计算市场规模分析

4.2.5 云计算平台服务商

4.2.6 云计算代表企业介绍

4.2.7 大数据技术体系图谱

4.2.8 大数据服务商分析

4.2.9 大数据市场规模分析

4.2.10 大数据市场支出规模

4.2.11 大数据行业应用结构

4.2.12 大数据产业人才需求

4.3 机器学习产业链中游分析

4.3.1 机器学习技术服务商

4.3.2 机器学习平台厂商

4.3.3 机器学习开放平台

4.3.4 机器学习开源发展

4.4 机器学习产业链下游概述

4.4.1 机器学习应用服务商

4.4.2 机器学习应用领域概况

4.4.3 基于GPU的机器学习应用

第五章2019-2023年深度学习行业发展深度分析

5.1 深度学习行业发展综述

5.1.1 深度学习基本概念

5.1.2 深度学习发展历程

5.1.3 深度学习所处阶段

5.1.4 深度学习主要功能

5.1.5 深度学习发展动力

5.1.6 深度学习融合发展

5.2 深度学习市场运行现状分析

5.2.1 深度学习竞争格局

5.2.2 细分市场发展现状

5.2.3 预训练模型现状分析

5.2.4 深度学习融资现状

5.2.5 深度学习应用领域

5.2.6 深度学习发展问题

5.2.7 深度学习发展建议

5.3 深度学习开源框架市场分析

5.3.1 深度学习框架发展历程

5.3.2 深度学习框架主要作用

5.3.3 深度学习框架驱动因素

5.3.4 深度学习框架市场份额

5.3.5 开源框架市场竞争格局

5.3.6 选择开源框架的考量因素

5.4 深度学习行业发展前景及趋势分析

5.4.1 深度学习应用前景

5.4.2 深度学习发展趋势

5.4.3 深度学习技术趋势

5.4.4 模型小型化发展方向

第六章中国机器学习行业应用领域发展分析

6.1 机器学习算法应用场景分析

6.1.1 分类算法应用场景

6.1.2 回归算法应用场景

6.1.3 聚类算法应用场景

6.1.4 关联规则应用场景

6.2 机器学习在医疗领域中的应用

6.2.1 主要应用场景

6.2.2 医疗影像智能诊断

6.2.3 新药研发

6.2.4 基因测序

6.3 机器学习在金融领域中的应用

6.3.1 主要应用场景

6.3.2 xx学习

6.3.3 金融科技

6.3.4 智能风控

6.3.5 智慧银行

6.3.6 智慧投顾

6.4 机器学习在农业领域中的应用

6.4.1 应用意义

6.4.2 应用现状

6.4.3 应用问题

6.4.4 应用展望

6.5 机器学习在制造业中的应用

6.5.1 应用优势

6.5.2 智能工厂

6.5.3 智能物流

6.5.4 智能系统

6.5.5 缺陷检测

6.5.6 预测性维护

6.5.7 生成设计

6.5.8 能耗预测

6.5.9 供应链管理

6.6 机器学习在智慧城市中的应用

6.6.1 智能政务

6.6.2 智能基础设施系统

6.6.3 智能交通

6.6.4 自动驾驶

6.6.5 安防行业

6.7 机器学习在教育领域中的应用

6.7.1 智慧校园

6.7.2 智慧课堂

6.7.3 智适应教学

第七章国内外企业主要机器学习产品及应用分析

7.1 全球主要科技企业机器学习布局

7.2 机器学习在国外企业中的应用

7.2.1 亚马逊机器学习应用

7.2.2 苹果公司机器学习应用

7.2.3 Ayasdi机器学习应用

7.2.4 Digital Reasoning机器学习应用

7.2.5 Facebook机器学习应用

7.2.6 谷歌机器学习应用

7.2.7 IBM Watson机器学习应用

7.2.8 QBurst机器学习应用

7.2.9 高通机器学习应用

7.2.10 Uber机器学习应用

7.3 机器学习在国内企业中的应用

7.3.1 百度机器学习云平台

7.3.2 阿里云机器学习平台

7.3.3 腾讯智能钛机器学习

7.3.4 第四范式AutoML平台

第八章中国机器学习重点企业经营分析

8.1 商汤科技

8.1.1 企业发展概况

8.1.2 经营效益分析

8.1.3 企业商业模式

8.1.4 机器学习布局

8.1.5 企业融资状况

8.1.6 企业应用场景

8.2 第四范式

8.2.1 企业发展概况

8.2.2 机器学习平台

8.2.3 企业融资规模

8.2.4 企业竞争优势

8.2.5 企业研发投入

8.2.6 企业应用场景

8.3 旷视科技

8.3.1 企业发展概况

8.3.2 企业经营效益

8.3.3 企业资产规模

8.3.4 企业业务构成

8.3.5 企业研发投入

8.3.6 机器学习技术

8.4 科大讯飞

8.4.1 企业发展概况

8.4.2 经营效益分析

8.4.3 业务经营分析

8.4.4 财务状况分析

8.4.5 核心竞争力分析

8.4.6 公司发展战略

8.5 浪潮集团

8.5.1 企业发展概况

8.5.2 经营效益分析

8.5.3 业务经营分析

8.5.4 财务状况分析

8.5.5 核心竞争力分析

8.5.6 公司发展战略

8.6 百度飞桨

8.6.1 企业发展概况

8.6.2 企业发展历程

8.6.3 平台技术优势

8.6.4 企业核心竞争力

8.6.5 深度学习发展

8.6.6 平台应用场景

8.7 索信达控股

8.7.1 企业发展概况

8.7.2 企业发展历程

8.7.3 业务经营分析

8.7.4 核心竞争力分析

8.7.5 公司发展战略

8.8 其他企业

8.8.1 九章 云极

8.8.2 阿里云

8.8.3 华为云

8.8.4 京东云

8.8.5 腾讯云

8.8.6 百分点

8.8.7 天云数据

第九章2024-2030年中国机器学习行业投资分析及前景预测

9.1 中国机器学习行业投资分析

9.1.1 机器学习投资状况分析

9.1.2 机器学习进入壁垒分析

9.2 中国机器学习行业发展前景分析

9.2.1 机器学习市场发展前景

9.2.2 机器学习行业发展方向

9.2.3 机器学习市场空间预测

9.3 机器学习技术发展趋势分析

9.3.1 发展胶囊网络技术

9.3.2 发展生成对抗网络

9.3.3 发展深度强化学习

9.3.4 可解释性机器学习

9.4 2024-2030年中国机器学习行业预测分析

9.4.1 2024-2030年中国机器学习行业影响因素分析

9.4.2 2024-2030年中国机器学习市场规模预测

在线订购
×

报告信息 价格

2024-2030年中国机器学习行业市场现状调查及投资前景研判报告

报告编号:45573601查看

收货信息

温馨提示

1、您也可以下载《2024-2030年中国机器学习行业市场现状调查及投资前景研判报告》,按订购单里的说明将您的订购信息填写好发送给我们;
2、如有变更,请与我们客服取得联系,联系电话:400-186-9919,联系邮箱:service@uninfo360.com;
3、报告为客户内部参考使用,不得将报告内容进行公开、出版、转让、出售。
下载订购单
提交订单
在线咨询
微信客服
BYZX-刘洋
BYZX-刘涛
BYZX-龚经理
电话客服
咨询热线
400-186-9919
010-62665210
QQ客服
客服QQ一
点击这里与我通话或留言:QQ号:1442702289
客服QQ二
点击这里与我通话或留言:QQ号:1501519512
返回顶部